SOLVER for Optimization

Dr. Warisa Wisittipanich

The procedures for finding an alternative with the best achievable performance as possible under the given constraints

Minimization/Maximization

Optimization tools? Lingo CPLEX Lindo Mathlab Excel - Solver Etc. Solver is <u>numerical optimization add-in</u> <u>software</u> embedded in Excel, but not enable by default

 Used to solve problem to find optimal or near optimal value

Solve linear/some non-linear problems

Advantages

- Everything of interests can be tracked (costs, profits, resources availability, resource usage)
- Cells of interests can be varies
- Used as "what-if" analysis tool
- Disadvantages
 - Black box
 - Need carefully modeling: constraints

Main Components :

Target cells Changing cells Constraints

Solver Parameters	x
Set Target Cell: SE\$25	<u>S</u> olve
Equal To: <u>Max</u> Min <u>Value of:</u> By Changing Cells:	Close
Image: Image state Image state Image state Image stat	<u>O</u> ptions <u>R</u> eset All <u>H</u> elp

- Target cell(s): contains objective function, the cell that represents the goal or objective of the problem
- Setting: maximization/minimization/fixed value

	Target Cell
Maximize	Profit
Minimize	Cost
Value of	Net future value

Changing cells /Adjustable cells: cells that contain decision variables, the cells that can be modified to arrive at the desired outcome, cells that we can change or adjust to optimize the target cell

Problem	Changing cells
Product mix	Amount of each product produced
Product shipping	Shipping quantity
Investment	Money invested in each project

Constraints:

- Restrictions or limitations to what Solver can do to solve the problem
- Restrictions to the changing cells or other cells related
- The rules which define the limits of the possible solutions to the problem
- Requirement constraints: given by problem
- Non-negative constraints

Type of Constraint	<u>Symbol</u>
Not greater than	\leq
Not less than	≥
Equal to	=
Integer	int
Binary	bin
Non-negative	≥ 0

Problem	Constraints
Product mix	Product mix produced cannot use more resources than are available
Production planning	Do not produce products more than demand
Investment	Obtain an expected return of at least 10 percent on the investment

Activate Solver: add-in that is not installed by default

File>Excel Option>Add-in> Manage Excel Add-in> Select the Solver Add-in checkbox

Add-Ins available: Analysis ToolPak Analysis ToolPak - VBA Conditional Sum Wizard Euro Currency Tools	ОК
Internet Assistant VBA □ Lookup Wizard V Solver Add-in Solver Add-in Tool for optimization and equ	Cancel <u>B</u> rowse Automation

Solver will be available as a new Tab on the data, Analysis Tab

 Determine target cell(s): must be a <u>Formula</u> cell containing changing cells

- maximize, minimize, set value
- Determine changing cells: must 'feed' into target cell

Establish constraints: the 'key' to make Solver work !!

Set Target Cell: \$E\$25		<u>S</u> olve
Equal To: <u>Max</u> Min <u>Value</u>	of: 0	Close
Subject to the Constraints:	Guess Add Change ↓ ↓ Delete	Options Options Reset All Help

Solver Options		X	Precision is the real number from 0 to 1 higher numbers means more precise
Max Time: Iterations:	100 seconds	OK Cancel	Tolerance shows how far away from the true optimal value and still be acceptable. Only applied to the problem with integer constraints
Precision:	.000001	Load Model	problem with integer constraints
Tolerance:	5 %	Save Model	
Convergence:	.0001	<u>H</u> elp	
Assume Linea	ar <u>M</u> odel 📃 <u>U</u> se	Automatic Scaling	
Assume Non-	Negative 📃 Show	w Iteration <u>R</u> esults	
Estimates	Derivatives	Search	
Tangent	Forward	Newton	
© Quadratic	© <u>C</u> entral	Conjugate	
		V KAIN KA	

Solver found a conditions are	solution. All o satisfied.	onstraints and	optimality	Reports	
Keep Sol Restore	ver Solution			Answer Sensitivity Limits	*
ОК	Cano	cel S	ave Scenari	io	<u>H</u> elp
ОК	Cano	el <u>s</u>	ave Scenari	100	<u>H</u> elp
ОК 2 1	Cano	el s 100 <: 80 <:	e e	io 100 80	<u>H</u> elp

Functions in Excel

SUM()SUMPRODUCT()

 Sum of product of 2 data sets [][] which are corresponding to each other

> 3 4

> 5

6

3

1

Ν

2

0

Μ

4

5

– Example

Example

The XYZ company makes two products: Doors and Windows. Three manufacturing resources are required: Cutting, Sanding and Finishing.

The requirements measured in hours per unit and shown in the table below along with the profit per unit of product. The availability of Cutting, sanding, and finishing operations are 40, 40, and 60 hours respectively. Determine the quantity of doors and windows to be produced to maximize the profit of the company.

ANN NN NNN	NAINIIIII	T I I I I I I I I I I I I I I I I I I I
Product	Doors	Windows
Cutting Hours per Unit	1	0.5
Sanding Hours per Unit	0.5	0.75
Finishing Hours per Unit	0.5	1
Profit per Unit	\$500	\$400
		I X KN I X I X I I I

Formulate the Product mix problem

- **X**₁ : number of Doors produced
- **X₂: number of Windows produced**
- z : company profit

 $\begin{array}{lll} \max \ z &= 500 \ X_1 + 400 \ X_2 \\ s.t & X_1 + 0.5X_2 &\leq 40 \\ 0.5X_1 + 0.75X_2 &\leq 40 \\ 0.5X_1 + X_2 &\leq 60 \\ X_1 \,, \, X_2 &\geq 0 \ (non-negative \\ constraint) \end{array}$

Diet Problem

My diet requires that all the food I eat come from one of the four "basic food groups" (chocolate cake, ice cream, soda, and cheesecake). Now, the following four foods are available for consumption: brownies, chocolate ice cream, cola, and pineapple cheesecake. Each brownie costs 50¢, each scoop of chocolate ice cream costs 20¢, each bottle of cola costs 30¢, and each piece of pineapple cheesecake costs 80¢. Each day, I must consume at least 500 calories, 6 oz of chocolate ,10 oz of sugar, and 8 oz of fat. The nutrition al content per unit of each food is shown in Table2. Solve this problem that can be used to satisfy my daily nutritional requirements at minimum cost.

Type of food	Calories	Chocolate (oz)	Sugar (oz)	Fat (oz)	1
Brownies	400	3	2	2	Z
Chocolate ice cream (1 scoop)	200	2	2	4	Z
Cola (1 bottle)	150	0	4	1	Ź
Pineapple Cheesecake (1 piece)	500	0	4	5	1

Transportation Problem

Powerco has 3 electric power plants that supply the needs of 4 cities. The costs of sending 1 million kwh of electricity from plant to city are shown in the table. Use Solver to minimize the cost of this problem.

То				Supply		
From	City1	City2	City3	City4	(million kwh)	
Plant1	\$8	\$6	\$10	\$9	35	
Plant2	\$9	\$12	\$13	\$7	50	
Plant3	\$14	\$9	\$16	\$5	40	
Demand	45	20	30	30		
(million kwh)		VXX	AN	XX	<u>xx///////x</u>	
HAHA		XXX	AN			
HHH	VAX	SAN	XXX	XXX		

Assignment Problem

Machineco has 4 machines and 4 jobs to be completed. Each machine must be assigned to complete one job. The time required to set up each machine for completing each job is shown the Table. Use Solver to minimize the total set up time needed to complete the 4 jobs.

Step through Solver Trial Solutions

Solutions can be observed step by step:

Solver Parameters>Options

Solver Parameters	×
Set Target Cell: \$E\$6 Equal To: Max But Chaptering Caller	<u>Solve</u> Close
\$C\$5:\$D\$5	
Subject to the Constraints: \$C\$5:\$D\$5 >= 0 \$E\$10 <= \$G\$10	Options
\$E\$11 <= \$G\$11 \$E\$12 <= \$G\$12 <u>D</u> elete	Reset All
	Help
	NHTIDAL

Step through Solver Trial Solutions

Select the **Show Iteration Results** check box to see the values of each trial solutions --- > click **OK**

During the run; **Stop**: to stop the solution process **Continue**: to continue the solution process

Solver Options		X			
Max Time:	100 seconds	ОК			
Iterations:	100	Cancel			
Precision:	.000001	Load Model			
Tolerance:	5 %	Save Model			
Convergence:	.0001	Help			
Assume Linea	r Model 📃 Use	Automatic Scaling			
Assume Non-	Negative 🛛 🗐 Show	v Iteration <u>R</u> esults			
Estimates	Derivatives	Search			
Tangent	Eorward	Newton			
○ Quadratic	© <u>C</u> entral	Conjugate			

The process of changing the values in cells to see how those changes will effect the outcome of formulas on the worksheet

What-If Analysis tools in Excel:

- Scenarios consider many different variables
- Goal Seek find out how to get a desired result
- Data Tables see the effects of one or two variables on formula

📭 🚽 🤊 - (° -) =	Examp	e - Microsoft Excel			- 0 -
Home Insert Page Layout Formulas	Data Review View Acrobat				0 - 🗖
	Connections			Show Detail	?⇔ Solver
From From From From Other Existing Refresh Access Web Text Sources Toonnections All	© Edit Links Z↓ Sort Filter Advance	d Text to Remove Data Consolidate Columns Duplicates Validation •	What-If Group Ungroup Analysis • • •	Subtotal	
Get External Data Co	onnections Sort & Filter	Data Tools	<u>S</u> cenario Manager	utline 🕞	Analysis
H11 • (* f _x			<u>G</u> oal Seek		
A B C D	E F G H	I J K L	Data <u>T</u> able	O P	Q
			RDD		

What-If Analysis

Goal Seek to find out how to get a desired result

The target is to determine the possible input value that produce the result

What-If Analysis

Data Tables see the effects of one or two variables on a formula/result

Data Table <u>cannot</u> work with more than two variables. But it can take as many different variable values as wanted.

If a model has more than two variables, use scenarios.

What-If Analysis

Scenarios consider many different variables

It can take many input variables sets <u>up to 32 different values</u> But as many scenarios as wanted can be created Solver is a tool for What-If Analysis

Solver is similar to Goal Seek except for the fact that it can determine more than one variable inputs

To save adjusting cell values as a scenario, click **Save Scenario**, then type the name of the scenario in the **Scenario Name** box

Solver Results Solver found a solution. All constraints and optimality conditions are satisfied.	Reports
Keep Solver Solution Restore Original Values OK Cancel Save Scenario	Answer Sensitivity Limits
	Save Scenario
	Scenario Name:

Scenario will be available for use in the Scenario Manager, which is accessed from **Data**>**What-If-Analysi**s Tab

		100	Example -	Microsoft Excel			a the second	- 0
Home Insert Page Layout	Formulas Data Revi	ew View Ac	robat					0 - 1
From From From From Other Existin Access Web Text Sources +	g ons Refresh All + Connections Properties Connections Properties Edit Links	A Z ↓ A Z A Z ↓ Sort Filt	 K Clear Reapply Advanced 	Text to Remove Columns Duplicates Va	Data Consolidate	What-If Analysis v	Hide Detail	Solver
Get External Data	Connections	Sort &	Filter		Data Tools	<u>S</u> cenario Manager	utline	Analysis
<u> </u>						<u>G</u> oal Seek		
A B C	DE	F G	H	I J	K L	Data <u>T</u> able	0 P	Q
See example								

Scenario Name is "good"

Scenario Name is "good".

Α	B	С	D	E	F	G	
	Scenario	Summa	ary				
			Current Values:	good			_
	Changing	Cells:]
		\$C\$14	20	20)		-
		\$D\$14	60	60)		
	Result Ce	lls:			_		
		\$E\$14	180	180			
		\$E\$16	100	100			
		\$E\$17	80	80)		
		\$E\$18	20	20)		
		\$E\$19	20	20)		
		\$E\$20	60	60)		

Notes: Current Values column represents values of changing cells at time Scenario Summary Report was created. Changing cells for each scenario are highlighted in gray.

Report will be created on a *new worksheet* in the current workbook

Solver found a solution. All constraints conditions are satisfied. <u>Keep Solver Solution</u> Restore <u>O</u> riginal Values OK Cancel	and optimality Reports Answer Sensitivity Limits <u>Save Scenario</u>

The XYZ company makes two products: Doors and Windows. Three manufacturing resources are required: Cutting, Sanding and Finishing.

The requirements measured in hours per unit and shown in the table below along with the profit per unit of product. The availability of Cutting, sanding, and finishing operations are 40, 40, and 60 hours respectively. Determine the quantity of doors and windows to be produced to maximize the profit of the company.

ANN NN NNN	NAINIIIII	T I I I I I I I I I I I I I I I I I I I
Product	Doors	Windows
Cutting Hours per Unit	1	0.5
Sanding Hours per Unit	0.5	0.75
Finishing Hours per Unit	0.5	1
Profit per Unit	\$500	\$400
		I X KN I X I X I I I

Formulate the Product mix problem

- **X**₁ : number of Doors produced
- **X₂: number of Windows produced**
- z : company profit

 $\begin{array}{lll} \max \ z &= 500 \ X_1 + 400 \ X_2 \\ s.t & X_1 + 0.5X_2 &\leq 40 \\ 0.5X_1 + 0.75X_2 &\leq 40 \\ 0.5X_1 + X_2 &\leq 60 \\ X_1 \,, \, X_2 &\geq 0 \ (non-negative \\ constraint) \end{array}$

	А	В	С	D	E	F	G	Н	Ι
1	Product I	lix							
2									
3									
4			Doors	Windows					
5		Qty	5	3					
6		Profit	500	400	3700				
7									
8									
9		Constraints	(all units in	hours)	Used		Availability	slack	
10		Cutting	1	0.5	6.5	<=	40	33.5	
11		Sanding	0.5	0.75	4.75	<=	40	35.25	
12		Finishing	0.5	1	5.5	<=	60	54.5	
13									r.
14									-
H									

Answer Report reports

- The original and final objective values
- The original and final values of the variables
- The final values of constraints
- The constrains formulas, binding status and the slacks

Constraint with <u>no Slack</u> -→ **Binding**

Answer Report

	A B	С	D	E	F	G
1	Microso	ft Excel 12.0	Answer Report			
2	Worksh	eet: [Example	e.xlsx]ProductM	ix		
3	Report	Created: 5/2/	2556 10:35:23			
4						
5						
6	Target C	ell (Max)			-	
7	Cell	Name	Original Value	Final Value	_	
8	\$E\$6	Profit	3700	26000	-	
9						
10						
11	Adjustab	e Cells			-	
12	Cell	Name	Original Value	Final Value	-	
13	\$C\$5	Qty Doors	5	20	_	
14	\$D\$5	Qty Windows	3	40	-	
15						
16						
17	Constrain	ts				
18	Cell	Name	Cell Value	Formula	Status	Slack
19	\$E\$10	Cutting Used	40	\$E\$10<=\$G\$10	Binding	0
20	\$E\$11	Sanding Used	40	\$E\$11<=\$G\$11	Binding	0
	#E#40	Finishing Used	50	\$E\$12<=\$G\$12	Not Binding	10
21	\$E\$12	<u> </u>			ALL A DOC 10	
21 22	\$C\$5	Qty Doors	20	\$C\$5>=0	Not Binding	20
21 22 23	\$C\$5 \$D\$5	Qty Doors Qty Windows	20 40	\$C\$5>=0 \$D\$5>=0	Not Binding Not Binding	20 40

Constraint with <u>no Slack</u> -→ **Binding**

Sensitivity Report gives

- The optimal variable values
- The final values for constraints
- The <u>shadow prices</u> for the constraints with the maximum allowable increase and decrease
- The <u>reduced cost</u> for the input variables with the maximum allowable increase and decrease

Note: if the model contains integer or Boolean constraints, sensitivity report cannot be produced

	A B	С	D	E	F	G	Н	Ι						
1	Microso	ft Excel 12.0	Sensiti	vity Repo	rt									
2	Worksheet: [Example.xlsx]ProductMix													
3	Report Created: 5/2/2556 13:29:23													
4														
5														
6	Adjustabl	e Cells												
7			Final	Reduced	Objective	Allowable	Allowable							
8	Cell	Name	Value	Cost	Coefficient	Increase	Decrease							
9	\$C\$5	Qty Doors	20	0	500	300	233.3333333							
10	\$D\$5	Qty Windows	40	0	400	350	150							
11														
12	Constrain	ts												
13			Final	Shadow	Constraint	Allowable	Allowable							
14	Cell	Name	Value	Price	R.H. Side	Increase	Decrease							
15	\$E\$10	Cutting Used	40	350	40	40	13.33333333							
16	\$E\$11	Sanding Used	40	300	40	6.66666667	20							
17	\$E\$12	Finishing Used	50	0	60	1E+30	10							
18														
T	HH	att	T A		TAK	NXT	DAG	Xt						

Shadow Price/Dual price: determine how the objective values will change as you obtain an additional unit of constraints <u>without</u> re-run the Solver

If constraint is binding (no slack) $-\rightarrow$ Shadow price \neq 0 If constraint is no binding $-\rightarrow$ Shadow price = 0

Reduced Cost : determine additional cost/profit for every additional variable unit occurred

If reduced Cost $\leq 0 \rightarrow$ Solution is optimal

MAXIMIZATION (ex. Profit, Revenue)

If shadow price is positive If shadow price is negative I

Profit increase Profit decrease

If reduced cost is positive If reduced cost is negative

Profit increase Profit decrease

MINIMIZATION (ex. Cost)

If shadow price is positive If shadow price is negative Cost increaseCost decrease

If reduced cost is positive If reduced cost is negative Cost increaseCost decrease

Analysis: Product Mix Problem

- If the availability of the cutting hours is increased to 80 hours, how much does the XYZ company gain their profit?
- How much should the XYZ company pay for the sanding labor cost if the availability of sanding hours is increased to 41?

Limits Report reports

- The achieved optimal objective value
- The input variables with the optimal values and with lower and upper bound
- The lower bound indicates the smallest value that a variable can take while satisfying the constraints and holding all of the other variables constant
- The upper bound is the largest value the variable can take under these circumstances

Limits Report

4	A B	С	D	E F	G	H I	J	K
1	Micros	oft Excel 12.	D Limits	Report				
2	Works	neet: [Examp	le.xlsx]	Limits Re	eport 1			
3	Report	Created: 5/2	2/2556	10:41:4	5			
4								
5								
6		Target						
7	Cell	Name	Value					
8	\$E\$6	Profit	26000					
9								
10						_		
11		Adjustable		Lower	Target	Upp	er Target	
12	Cell	Name	Value	Limit	Result	Lim	it Result	
13	\$C\$5	Qty Doors	20	0	16000		20 26000	-
14	\$D\$5	Qty Windows	40	0	10000		40 26000	
15								-
40								

Diet Problem

My diet requires that all the food I eat come from one of the four "basic food groups" (chocolate cake, ice cream, soda, and cheesecake). Now, the following four foods are available for consumption: brownies, chocolate ice cream, cola, and pineapple cheesecake. Each brownie costs 50¢, each scoop of chocolate ice cream costs 20¢, each bottle of cola costs 30¢, and each piece of pineapple cheesecake costs 80¢. Each day, I must consume at least 500 calories, 6 oz of chocolate ,10 oz of sugar, and 8 oz of fat. The nutrition al content per unit of each food is shown in Table2. Solve this problem that can be used to satisfy my daily nutritional requirements at minimum cost.

Type of food	Calories	Chocolate (oz)	Sugar (oz)	Fat (oz)	1
Brownies	400	3	2	2	Z
Chocolate ice cream (1 scoop)	200	2	2	4	Z
Cola (1 bottle)	150	0	4	1	Ź
Pineapple Cheesecake (1 piece)	500	0	4	5	1

Create sensitivity report and answer the following questions

- 1. If you must consume total calories at least 600 oz, what is the new cost?
- 2. If you must consume chocolate at least 8 oz, what is the new cost ?
- 3. If you want to eat 1 piece of brownie, what is the new cost?

Transportation Problem

Powerco has 3 electric power plants that supply the needs of 4 cities. The costs of sending 1 million kwh of electricity from plant to city are shown in the table. Use Solver to minimize the cost of this problem.

	То				Supply		
From	City1	City2	City3	City4	(million kwh)		
Plant1	\$8	\$6	\$10	\$9	35		
Plant2	\$9	\$12	\$13	\$7	50		
Plant3	\$14	\$9	\$16	\$5	40		
Demand	45	20	30	30			
(million kwh)		VXX	AN	XX	<u>xxx111117</u>		
HAHA		XXX	AN				
HHH	VAX	AN	XXX	SKK			

Create sensitivity report and answer the following questions

- If electricity supply of Plant1 increases by 5 million kwh, how is it effect the cost? What will be the new cost?
- 2. If electricity supply of Plant2 increases by 5 million kwh, how is it effect the cost? What will be the new cost?

Inventory Problem

Sailco Corporation must determine how many sailboats should be produced during each of the next four quarters. The demand during each of the next four quarters is as follows: 40, 60, 75, and 25 sailboats. Sailco must meet demand on time. At the beginning of the first quarter, Sailco has an inventory of 10 sailboats. Sailco must decide how many sailboats should be produces during the quarter. For simplicity, we assume that sailboats manufactured during a quarter can be used to meet demand for that quarter. During each quarter, Sailco can produce up to 40 sailboats with regular time labor at a total cost of \$400 per sailboats. By having employees work overtime during a quarter, Sailco can produce additional sailboats with overtime labor at a total cost of \$450 per sailboats. At the end of each quarter(after production has occurred and the current quarter's demand has been satisfied), a carrying or holding cost of \$20 per sailboats is incurred. Determine production schedule to minimize the sum of production and inventory cost during the next four quarters.